
Guest Lecture :: IEEE WirelessMAN and Wide and Metropolitan Area Networks

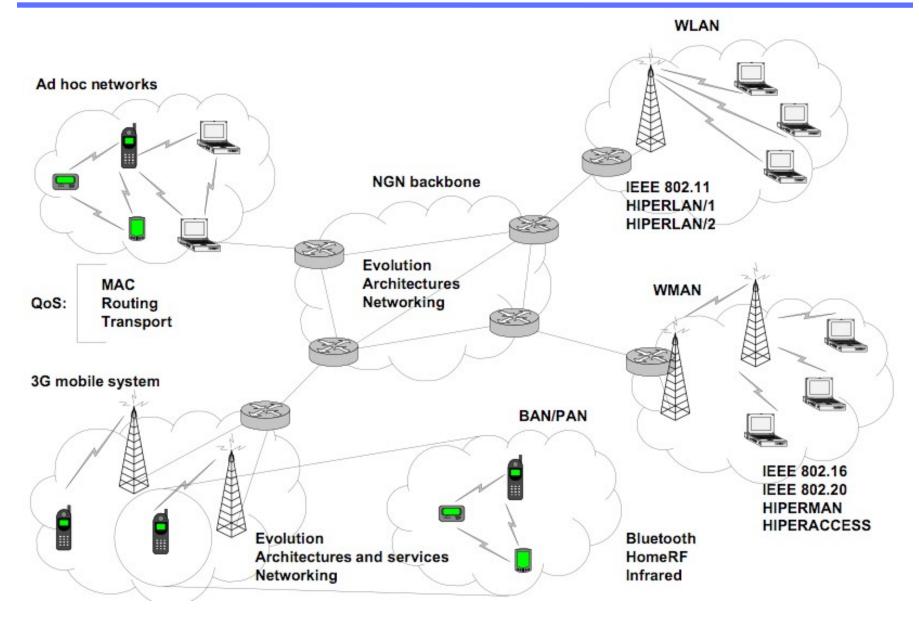
Thomas Michael Bohnert University of Coimbra Portugal thomas.bohnert@tut.fi http://tb.nginet.de

Today's Network Heterogeneity

Wide Area Networks, WAN

- Regional, national and international coverage
- PSTN and Internet
- Cable and Satellite TV
- WWAN: GSM / GPRS / EDGE
- WAN: SDH / SONET
- Metropolitan Area Networks
 - Covers the size of a city
 - MAN: ATM / Ethernet
 - WMAN: "Google WiFi" Montain View, CA, 8
- Local Area Networks
 - **SoHo**["] Small Office, Home Office, group of buildings
 - 802.3 (Ethernet) and 802.11 (wireless)
- Private Area Networks, PAN
 - Short-range communication, < room, Ethernet, Bluetooth, ZigBEE
- Heterogeneous networks
 - In services
 - In scale and technology

Next Generation Networking


There are too many networks out there

- PSTN Primary for Voice and FAX
- GSM Primary for Voice
- Cable TV Broadcasting Television
- Satelite Networks TV but also Internet
- ISDN Multi-service network
- and xDSL Internet access

But the past 15 years have thaught us

- The Internet is the most flexible and powerfull network out of the whole set. Hence, why do we not use the Internet for all services?
- That's the principle idea of NGN
 - Unified Communications
 - One single infrastructure for all services
 - Convergence
 - Operation, Management is simplified and expenses are cut dramatically

NGN All-IP Architecture

TTY :: spring 2007 :: Guest Lecture

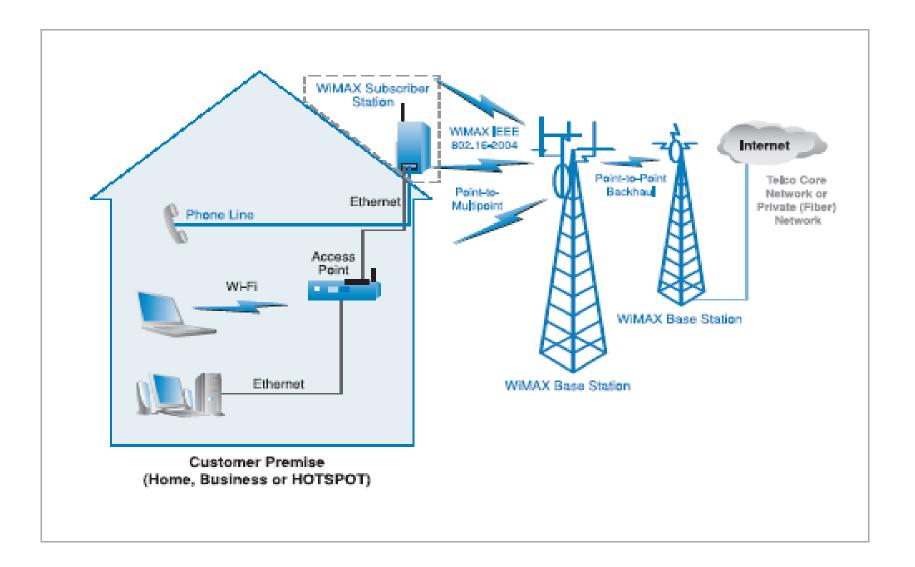
Broadband Wireless Access

- But Many services call for powerful network access!
 - IPTV − A single session needs up to 3 Mbps and lasts ~ 2 hour
- And users expect services "Anytime, Anywhere"
- That's why we need Broadband Wireless Access
 - Why? It simply much cheaper and more flexible
 - Impervious and remote areas with little population
 - But also for highly dense populated areas. Who wants to crack the streets of Manhattan down town?
 - Supports mobility like users are used to from GSM/UMTS
 - World Wide efforts in the area
 - IEEE 802.16 Working Group
 - WirelessMAN Standard for Wireless Metropolitan Area Networks"
 - ETSI HIPERMAN
 - Took IEEE 802.16 standards as a baseline
 - mostly in terms of PHY layer
 - therefore, 802.16 and HIPERMAN
 - Shall comply with each other and consolidate into a global system
 - WiBro, South Korea

IEEE 802.16 WirelessMAN

IEEE 802.16 WMAN Working Group

- Founded in 1998 at the IEEE Radio and Wireless Conference, Colorado, USA
- Objective
 - Publishing a standard for Broadband Wireless Access
 - IP-oriented
 - Comprehensive QoS model
 - non-licensed bands and licensed band
 - long and short distance

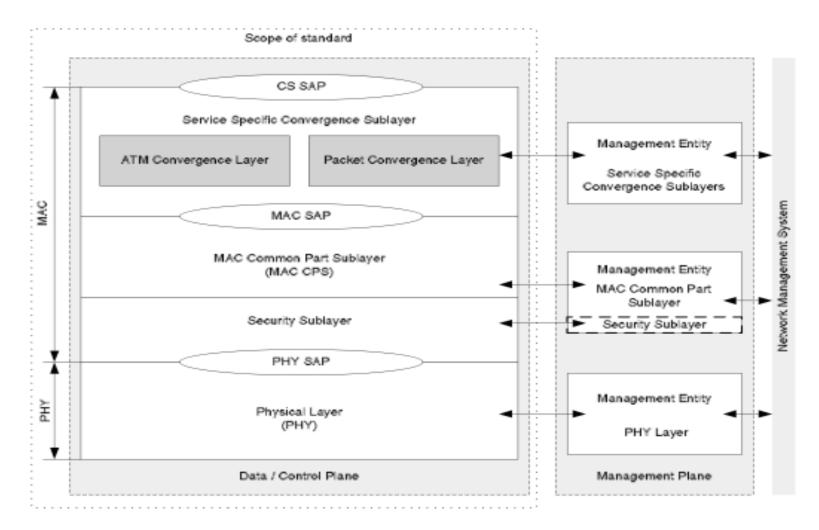


IEEE 802.16 family

	802.16	802.16a	802.16REVd or 802.16-2004	802.16e	
Approved	Dec. 2001	Jan. 2003	July 2004	App. July 2005	
Spectrum	10 - 66 GHz	< 11 GHz < 11 GHz		2 - 6 GHz	
Propagation	LOS	NLOS	NLOS	NLOS NLOS	
Modulation	QPSK, 16QAM и 64QAM	OFDM 256, OFDMA + 802.16	OFDM 256, OFDMA + 802.16	OFDM 256, OFDMA + 802.16	
Speed	32 – 134 Mbps	1 – 75 Mbps	Like 802.16a	Up to 15 Mbps	
Mobility	No	No	No	Yes, with roaming	
Channel bandwidth	20, 25 and 28 MHz	Variable from 1,25 up to 20 MHz	Like 802.16a	> 5 MHz	
Cell size	1 - 5 km	5 – 8 km, max. is 50 km with directional antenna	Like 802.16a	1 – 5 km	
Terminal		External with external antenna	External with internal antenna	PC card	

TTY :: spring 2007 :: Guest Lecture

Component Overview – IEEE 802.16-2004

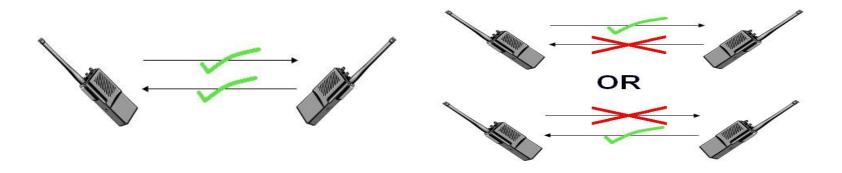


IEEE 802.16 Architecture

- IEEE 802.16 does define
 - Four different PHY and a generic MAC layer
- Key features are
 - Flexible and extensible common MAC
 - Independent from PHY
 - Modular
 - PHY and MAC are composed of different sub-layers
 - Different Network Topologies
 - Point-to-Point (PtP)
 - Point-to-Multipoint (PMP), Mesh
 - Duplexing
 - TDD and FDD support
 - Multiple Antenna Technologies
 - Omnidirectional, directional, sektorized
 - Subscriber-level adaptive PHY
 - per-connection channel aware communication
 - Convergence sub-layer
 - Ethernet and ATM convergence sub-layer

802.16 protocol stack

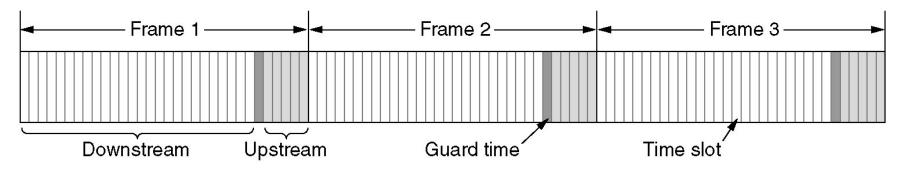
IEEE 802.16 layers and sub-layers


TTY :: spring 2007 :: Guest Lecture

Base Station vs. Subscriber Station

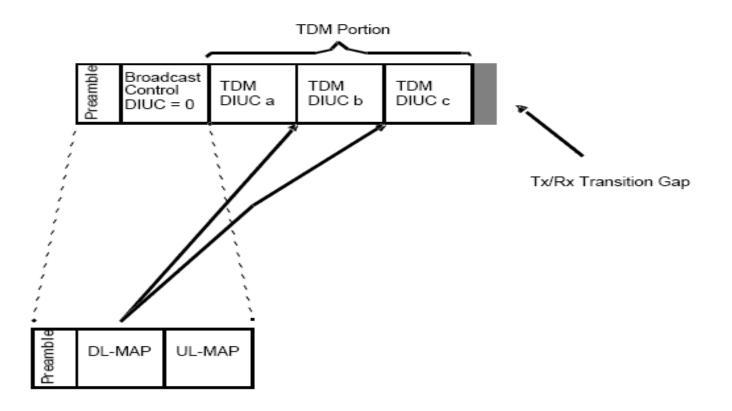
- Base Station (BS) and Subscriber Station (SS) are in a Master-Slave relation
- Base Station
 - Enforces System configuration and parameter
 - Which PHY layer configuration (OFDM, OFDMA, SC, etc)
 - Coordinates Down-Link (DL) and Up-Link (UL) per-frame schedule
 - DL : BS->SS
 - UL : SS->BS
 - Bandwidth allocation for DL and UL per-frame/connection
 - Communicating per-frame schedule
 - Subscriber Station
 - Establishes basic connectivity with a BS, called "Ranging"
 - Generates Bandwidth Requests
 - Makes local scheduling decisions
 - Transmits **only** when its is told to so

IEEE 802.16 Duplexing

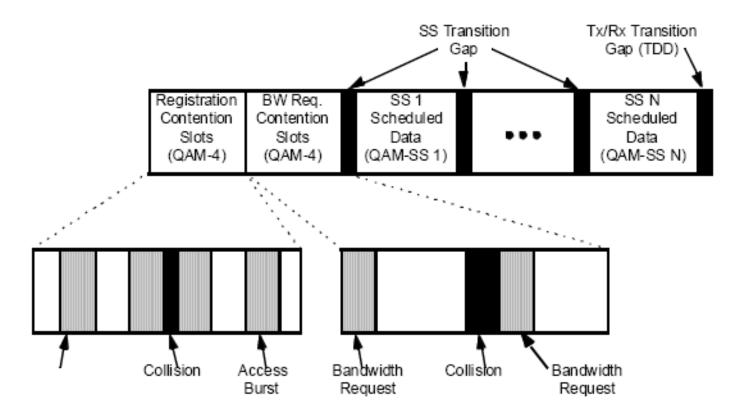

IEEE 802.16 supports full-duplex and half-duplex communication

TDD is favourable since

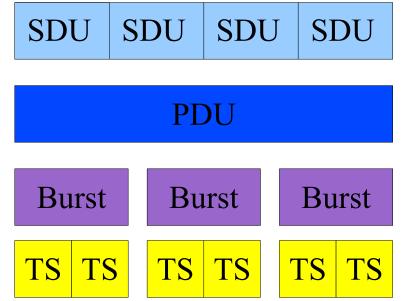
- It supports asymmetric and adaptive downlink/uplink ratios
- TDD only requires a single channel
- It allows greater flexibility for adaptation to global spectrum allocations
- Its implementation is less complex, i.e. cheaper


IEEE 802.16 TDD Framing

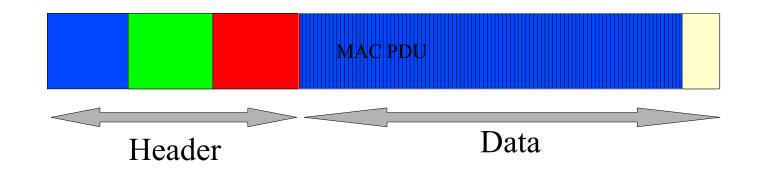
- TDD is favourable since
 - It supports asymmetric and adaptive downlink/uplink ratios
 - TDD only requires a single channel
 - it allows greater flexibility for adaptation to global spectrum allocations
 - its implementation is less complex, i.e. cheaper
- The BS is in charge of coordination of the resource, i.e. time slot assignment
- It has to communicate its decision to the Sss
- At the beginning of each frame there is a DL-MAP and a UL-MAP


IEEE 802.16 TDD Framing

- TDD Down-link sub-frame
- In the DL-Map the BS broadcasts "what-is-when-for-whom"
- Hence, the BS broadcasts traffic (shared medium!) and all SSs listen
- Therefore collision free communication

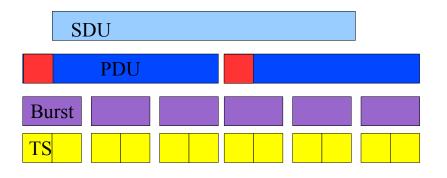

IEEE 802.16 TDD Framing

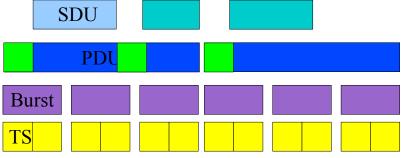
- TDD Up-Link sub-frame
- In the UL-Map the BS communicates "who-sends-when-how-long"



From Packets to Time Slots

- Service Data Unit (SDU) is an entity from upper level (e.g. IP packets)
- SDU(s) are encapsulated in a MAC Protocol Data Unit (PDU)
- MAC PDU are transmitted within socalled data bursts
- A data burst is made of one or multiple time slots
- There are rules on how SDUs are splittedtween PDUs
- No restrictions on how many PDUs are put into bursts
- However, the maximum PDU size is 4096 Bytes
- The final restriction for data burst size is the frame size


IEEE 802.16 MAC Protocol Data Unit



MAC Protocol Data Unit

- Basic transmission unit
- One header and optional subheaders
 - Fragmentation subheader
 - Packing subheader
 - Grant management subheader
- MAC PDU possibly entails a CRC field

Fragmentation and Packing

- Fragmentation
 - SDU exceeds the maxium size (4096B) of the PDU
 - SDU is split over multiple PDUs
 - to identify fragments, each PDU has a fragmentation subheader (FS)

Packing

- Multiple SDUs are packed into one PDU
- For each each SDU, the packing subheader (PS) is required
- Packing also supports SDU fragments SDU

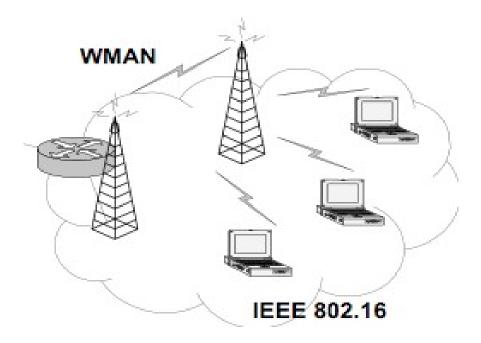
IEEE 802.16 Connection Orientation

IEEE 802.16 is connection oriented

- Species a unidirectional logical connection at the link-level
- Link-level means between two peered MAC instances
- Multiple connections can exist per one SS/BS pair
- Always explicitly established and have a unique identifier (CID)
- Encodes source, destination, and the service access point
- Connection types
 - Initial
 - Used by an SS while entering the network
 - Basic
 - BS created at network entry
 - Used by an SS to send priority MAC signalling messages
 - Management (primary and secondary)
 - BS created at network entry
 - Used by an SS to for signalling related to MAC but also by higher level protocols
 - Transport
 - Initiated by an SS (optional feature) or BS (mandatory feature)
 - Used to user data
 - Has QoS parameters assigned

IEEE 802.16 Access Management

CSMA/CD (IEEE 802.3 Ethernet)


- Stations sense the carrier
- No access priority for individual stations
- Collision detection and resolution, backoff for a random period and try again
- CSMA/CA (IEEE 802.11 WLAN)
 - Stations sense the carrier
 - No access priority for individual stations
 - Stations try to avoid consecutive collisions by using a backoff mechanism
- DAMA (IEEE 802.16 WiMAX)
 - Demand assigned multiple access
 - Stations listen for UL data, and stay idle until they do not have data to send
 - If they have data, they request UL bandwidth (times slots in TDD)
 - A station can send data only when the BS allocates resources

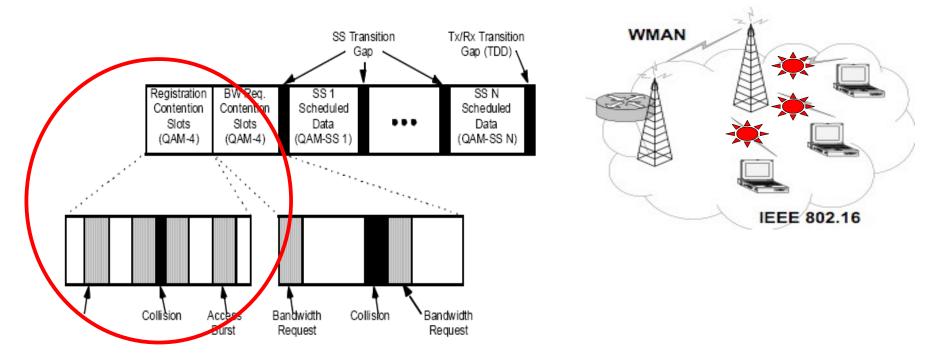
- Depending on the number of the connections, two allocation modes are available:
- Per Connection Grant
 - SS can maintain several transport connections
 - Each has its own QoS requirements
 - The BS allocates resources for each connection
 - Unfavourable due to poor scalability
 - BS has to keep states for a large number of transport connections
 - Example:
 - One VoIP/G.711 connection needs max. 64KBps
 - 23.52 MBps / 64 Kbps = 367 Connections
 - Recall capacity can be up to 130MBps -> ~ 2200

		5 MHz Channel		10 MHz Channel	
Mod.	Code Rate	Downlink Rate, Mbps	Uplink Rate, Mbps	Downlink Rate, Mbps	Uplink Rate, Mbps
QPSK	1/2 CTC, 6x	0.53	0.38	1.06	0.78
	1/2 CTC, 4x	0.79	0.57	1.58	1.18
	1/2 CTC, 2x	1.58	1.14	3.17	2.35
	1/2 CTC, 1x	3.17	2.28	6.34	4.70
	3/4 CTC	4.75	3.43	9.50	7.06
16QAM	1/2 CTC	6.34	4.57	12.67	9.41
	3/4 CTC	9.50	6.85	19.01	14.11
64QAM	1/2 CTC	9.50	6.85	19.01	14.11
	2/3 CTC	12.67	9.14	25.34	18.82
	3/4 CTC	14.26	10.28	28.51	21.17
	5/6 CTC	15.84	11.42	31.68	23.52

Per Subscriber Station Grant

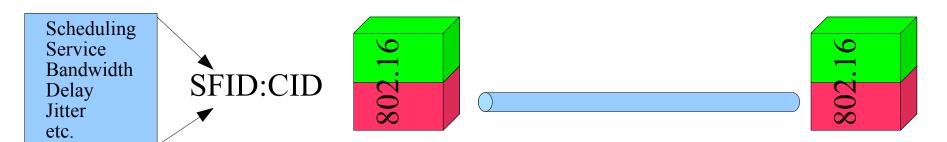
- Only one transport connection per SS
- SS requests bandwidth for the traffic aggregate
- BS allocates resources for the aggregate
- The SS assigns resources to individual flows by local scheduling
- Complexity is distributed and hence the burden shared

- The SS has to inform the BS about required UL resources
- The BS decides how to achieve QoS aware but fair resource allocation


Types of Bandwidth Request

- Aggregated
 - The size of the complete output buffer is sent to the BS
- Incremental
 - delta previous bandwidth request size and current buffer size is sent
- But how can an SS send bandwidth requests?
 - Piggy-back message
 - Only when it has already data and bandwidth
 - Only incremental requests
 - Standalone message
 - Separate MAC PDU
 - Either incremental or aggregated requests

- To send standalone message, an SS already needs bandwidth
 - Henn-egg problem!
- So how to get bandwidth to send bandwidth requests?
- IEEE defines two methods
 - Polling
 - Contention based
 - Polling
 - A BS allocates in regular intervalls small units of BW for a SS
 - Allocation unit is only for an individual SS
 - SS uses this BW to send a BW request if it has to send data
 - Polling interval depends on the service type:
 - Few milliseconds for time-critical services
 - Up to some seconds for non-critical services
 - No BW request conflicts, e.g. collisions
- Again, this can incurr scalability issues
 - A huge number of time-critical connections can consume signicant amount of resourcess

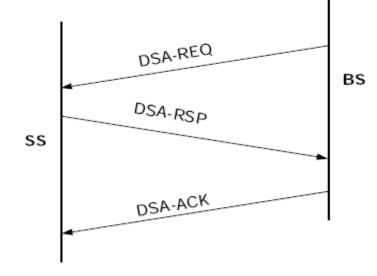

Contention based BW requesting

- BS allocates request contention slots
- Each SSs can send the bandwidth requests during this period
- Simulultaneous requests cause collisions
- Hence, can not be used for the time-criticsl applications
- Predominantly meant for the BE services

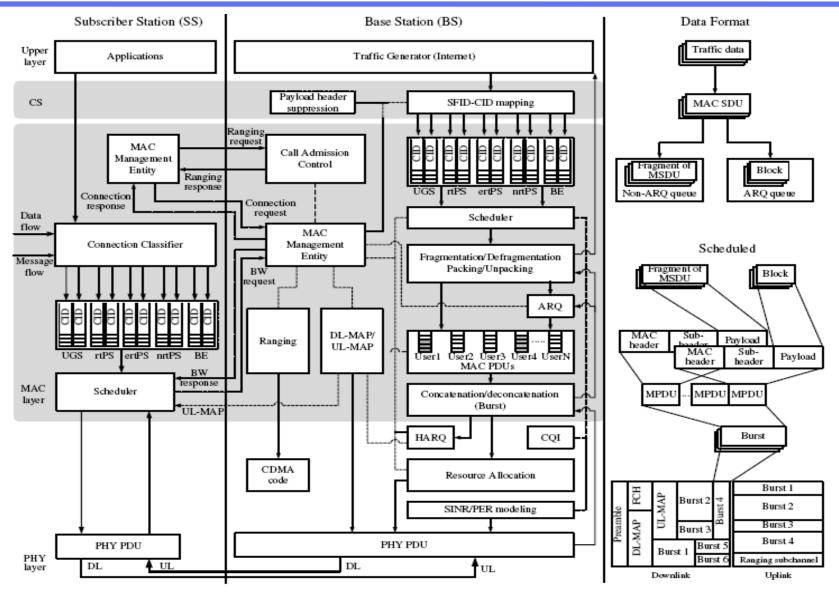
IEEE 802.16 Service Flows

- The IEEE QoS model supports a set of different services
- Services to support applications like
 - RT: VoIP, IPTV, VoD
 - BE: FTP, HTTP
- For this reason, IEEE 802.16 introduces the concept of Service Flows
- Each service flow has an unique ID (SFID) and identifies a specific service
- Each connection (CID) is associated with one SFID
- CID for "peer addressing", SFID for "service addressing"
- But not all connections are associated with a SFID
 - Recall the management connections
- Each connections is associated with a service, which again is associated with a set of specific QoS parameters

IEEE 802.16 UL Services Classes


Unsolicited Grant Service (UGS)

- Constant rate applications, e.g. VoIP without VAD
- A connection is assigned periodically BW allocated
- QoS: maximum rate, tolerated jitter, maximum latency
- Extended real-time Polling Service (ertPS) 802.16e
 - VoIP with VAD,
 - When active periodic BW allocation, if inactive being polled
 - QoS: maximum/minimum trafc rate, maximum latency
- Real-time Polling Service (rtPS)
 - Variable rate applications, e.g. IPTV data
 - Applications have to request for BW, piggy-back, polling
 - QoS: maximum trafc rate, tolerated jitter, maximum latency
- Non-real-time Polling Service (nrtPS)
 - Critical applications without strict timing requirements
 - Applications have to request for BW, contention, piggy-back, polling
 - QoS: maximum/minimum trafc rate, trafc priority
- Best Effor (BE)
 - Non-critical applications
 - QoS: maximum trafc rate, trafc priority


IEEE 802.16 Service Flow Management

Service flows can be

- Preprovisoned
 - During network entry the BS creates a pre-configured service flow
- Created on demand
 - BS (mandatory feature) can create a new service flow
 - SS (optional featue) can request the creation of a new service flow
- Active or inactive
 - A service flow which is currently not used to transmit data can be set idle
 - Think about traffic during the night
 - It can be reactivated on request
- Dynamic Service Addition (DSA)
 - BS intitated
 - Could be SS intitated
- Dynamic Service Change (DSC)
 - Change QoS parameters
- Dynamis Service Deletion (DSD)

IEEE 802.16: A Complete Picture

TTY :: spring 2007 :: Guest Lecture

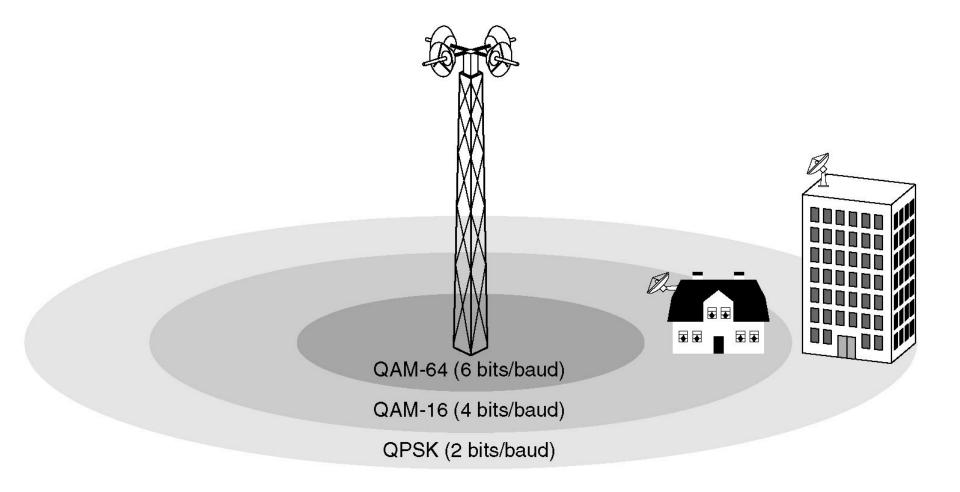
IEEE 802.16 Physical Layer in Brief

10–66 Ghz Spectrum

- Deemed to require Line-Of-Sight (LOS) propagation
- Hence, single-carrier modulation
- called "WirelessMAN-SC"

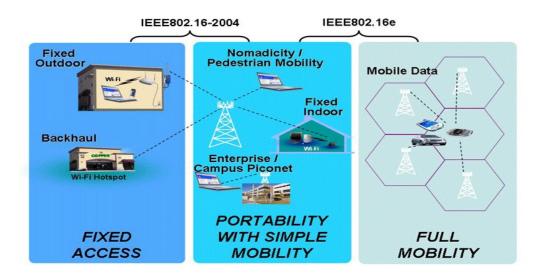
2-11 Ghz Spectrum

- Non-Line-Of-Sight (NLOS)
- For residencial areas where rooftops are low and obstacles everywhere
- Has to deal with extensive Mulitpath propagation


Defined are

- "WirelessMAN-SCa"
- "WirelessMAN-OFDM"
- "WirelessMAN-OFDMa
- "WirelessHUMAN"

Advanced features


- Adaptive modulation and coding (AMC)
- Fast Channel Feedback (CQICH)
- Smart Antenna Technologies
 - Beamforming:
 - Multiple-antennas transmit weighted signals to improve coverage/ capacity
- etc.

IEEE 802.16 Efficiency

TTY :: spring 2007 :: Guest Lecture

IEEE 802.16e

- Mobility Extension Key Features
 - Per sector in a 10 MHz channel
 - Peak DL data rates up to 63 Mbps
 - Peak UL data rates up to 28 Mbps
 - Robust link adaptation in mobile environments at vehicular speeds in excess of 120 km/hr.
 - Hndover schemes with latencies less than 50 millisecond

IEEE 802.16e – Mobility Management

Power Management

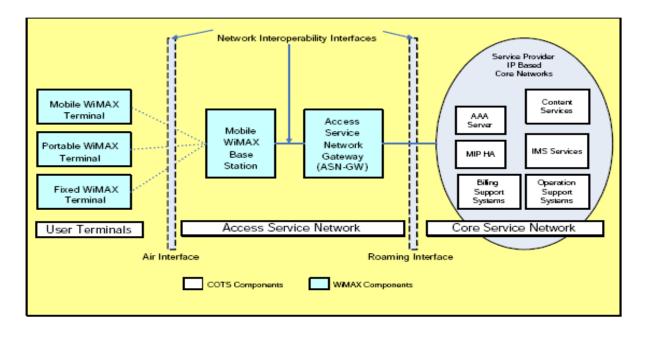
- Sleep Mode
 - In this state the MS conducts pre-negotiated periods of absence
 - Minimal MS power BS air interface resources
- Idle Mode
 - A mechanism for the MS to become periodically available for DL broadcast traffic messaging without registration at a specific base station
 - Ideal if the MS traverses an environment with multiple base stations
 - No handover required
- Handoff (HO)

- Hard Handoff (HHO)
 - Break-before-make
- Fast Base Station Switching (FBSS)
 - MS and BS maintain a list of "Active BSs"
 - MS is attached to an Anchor BS (ABS)
 - MS monitors signal strentgh
 - If below thres, select better BS for becoming ABS
 - During HO data is mulitcasted to ALL "Active BSs"
 - Macro Diversity Handover (MDHO)

WiMAX Forum

- Worldwide Interoperability for Microwave Access (WiMAX)
 - WiMAX is NOT 802.16!
- Founded in April 2001
- Non Profit organization that supports and promotes WiMAX's commercial usage
- Members include Intel, AT&T, Siemens Mobile, British Telecommunications, France Telecom, Qwest, …, yes, and NOKIA
 - Carl Eklund from Nokia Research was one of the early pioneers
- Main Objectives
 - "WiMAX Forum Certified Product"
 - Ensure product interoperability

WiMAX - Certification


- WiMAX Forum Certified Product
 - Ensure product conformance and interoperability

- Mobile WiMAX Certification Profiles based on frequency bands and channel bandwidths
 - 2.3-2.4, 2.5-2.7 or 3.3-3.8 GHz
 - 5, 7, 8.75 or 10 MHz channel bandwidths

Wimax – All-IP NGN

- WiMAX is reaching far beyond 802.16
 - Defines a complete All IP End-to-End Network (Reference Model)
 - "Inter-vendor, inter-network interoperability for roaming, multi-vendor access networks, and inter-company billing"
 - Interfaces and protocols are based on IETF (open) standards
 - One main objective is 3GPP(2) interoperability

IEEE WirelessMAN / WiMAX Research

European Research Projects

- European Information Society Technology (IST) FP6 Integrated Project: "WiMAX Extensions to Isolated Research Data Networks (WEIRD)"
 - www.ist-weird.org
- European Science Foundation COST 290 Action: "Wi-QoST::Traffic and QoS Management in Wireless Multimedia Networks" LINK
 - www.cost290.org
 - Chaired by Yevgeni Koucheryavy, here at TUT
- There are a plethora of research subjects
 - Scheduling
 - Admission Control
 - Performance Analysis for RT
 - etc. etc.
- Interested? You want to know more or get involved?
 - Feel free to contact me. thomas.bohnert@tut.fi
 - For some more info and a copy of this slides visit
 - wimax.nginet.de

Thank you

Hopefully there is still time now for your questions ... Feel free!

P.S. "Eleven reasons for studying in Coimra, Portugal"

TTY :: spring 2007 :: Guest Lecture